2 research outputs found

    ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries

    Get PDF
    This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors

    Structural and functional brain connectivity in presymptomatic familial frontotemporal dementia

    No full text
    Objective: We aimed to investigate whether cognitive deficits and structural and functional connectivity changes can be detected before symptom onset in a large cohort of carriers of MAPT (microtubule-associated protein tau) or GRN (progranulin) mutations. Methods: In this case-control study, 75 healthy individuals (aged 20-70 years) with 50% risk of frontotemporal dementia (FTD) underwent DNA screening, neuropsychological assessment, structural MRI, and fMRI. We used voxel-based morphometry and tract-based spatial statistics for voxel-wise analyses of gray matter volume and diffusion tensor imaging measures. Using resting-state fMRI scans, we assessed whole-brain functional connectivity to frontoinsular, anterior midcingulate, and posterior cingulate cortices. Results: Carriers (n = 39) and noncarriers (n = 36) had similar neuropsychological performance, except for lower Letter Digit Substitution Test scores in carriers. Worse performance on Stroop III, Rivermead Behavioral Memory Test, and Happé Cartoons correlated with higher age in carriers, but not controls. Reduced fractional anisotropy in the right uncinate fasciculus was found in carriers compared with controls. Reductions in functional connectivity between anterior midcingulate cortex and frontoinsula and several other brain regions were found in carriers compared with controls and correlated with higher age in carriers, but not controls. We found no significant differences or age correlations in posterior cingulate cortex connectivity. No differences in regional gray matter volume were found, except for a small cluster of higher volume in the precentral gyrus in carriers. Conclusions: This study demonstrates that alterations in structural and functional connectivity develop before the first symptoms of FTD arise. These findings suggest that diffusion tensor imaging and resting-state fMRI may have the potential to become sensitive biomarkers for early FTD in future clinical trials
    corecore